$$\begin{split} & \underline{\operatorname{Newait}} \ \underline{\operatorname{Math}} \ \underline{\operatorname{Sch}} \ \underline{\operatorname{Math}} \ \underline{\operatorname{Ord}} \ \underline{\operatorname{Newait}} \ \underline{\operatorname{Corber}} \ \underline{\operatorname{19^{th}}} \ \underline{\operatorname{sch}} \ \underline{\operatorname{Sch}}$$

Kuwait University Dept. of Math.& Comp. Sci.	Math.101 First Exam.	Suggested Answer Key October 19, 2000
1. (a) $\lim_{x \to -2} \frac{x^3 + 8}{x + 2} = \lim_{x \to -2} \frac{(x + 2)(x^3)}{x + 2}$	$\frac{x^2-2x+4)}{x+2} = 12$	
(b) $\lim_{x \to -\infty} \frac{\sqrt{x^2 + x}}{2x + 1} = \lim_{x \to -\infty} \frac{ x \sqrt{1}}{x(2 + x)}$	$\frac{\overline{\left(\frac{1}{x}\right)}}{\left(\frac{1}{x}\right)} = \lim_{x \to -\infty} \frac{-x_1}{x_1}$	$\frac{\sqrt{1+\left(\frac{1}{x}\right)}}{\left(2+\frac{1}{x}\right)} = \boxed{-\frac{1}{2}}$
(c) $\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - 1}{\tan x} \times \frac{\sqrt{1 + \sin x}}{\sqrt{1 + \sin x}}$	$\frac{\overline{\ln x} + 1}{\overline{\ln x} + 1} = \lim_{x \to 0} \frac{1}{\left(\frac{\sin x}{\cos x}\right)}$	$\frac{\sin x}{\left(\sqrt{1+\sin x}+1\right)} = \boxed{\frac{1}{2}}$
(d) $-1 \leq \sin\left(\frac{1}{x-1}\right) \leq 1 \ \forall x \in \mathbb{R}$	$-\{1\} \Rightarrow$	
$-(x-1)^2 \le (x-1)^2 \sin\left(rac{1}{x-1}\right)^2$	$\left(\frac{1}{1}\right) \leq \left(x-1\right)^2 \forall x \in \mathbb{R}$	$\in \mathbb{R} - \{1\}$.
$\lim_{x \to 1} (x - 1)^2 = 0 = \lim_{x \to 1} - (x - 1)^2 = 0$	$1)^2$. From The San	dwich theorem:
$\lim_{x \to 1} (x - 1)^2 \sin\left(\frac{1}{x - 1}\right) = 0.$		
2. $2x - 3 = 0 \Rightarrow x = \frac{3}{2}$.		
$\lim_{x \to \frac{3}{2}^+} f(x) = \infty, \lim_{x \to \frac{3}{2}^-} f(x) = -\infty$	$\Rightarrow \boxed{x = \frac{3}{2}}$ is V.A. for	or the graph of f .
$\lim_{x \to \infty} f(x) = \frac{1}{2} \Rightarrow \boxed{y = \frac{1}{2}}$ is H.A. for	the graph of f .	
$\lim_{x \to -\infty} f(x) = -\frac{1}{2} \Rightarrow y = -\frac{1}{2}$ is H.A	A. for the graph of .	<i>f</i> .
3. $f(k) = 2k^2 = \lim_{x \to k^-} f(x)$		
$\lim_{x \to k^+} f(x) = \lim_{x \to k^+} \frac{\sqrt{x - k + 1} - 1}{x - k} >$	$<\frac{\sqrt{x-k+1}+1}{\sqrt{x-k+1}+1} =$	$=$ $\frac{1}{2}$
f is continuous at k when $2k^2 = \frac{1}{2}$	$\Rightarrow k = \pm \frac{1}{9}$	
4. $f(x) = \frac{ x-1 (x-2) }{(x-1)(x-2)(x-3)}$		
$\lim_{x \to 1^+} f(x) = -\frac{1}{2}, \lim_{x \to 1^-} f(x) = \frac{1}{2} \Rightarrow$	The graph of f has	s jump discontinuity at $x = 1$.
$f(2)$ is undefined and $\lim_{x \to 2} f(x) = -$	$-1 \Rightarrow$ The graph of	f has removable discontinuity
at $x = 2$.	-	
$\lim_{x \to 3^+} f(x) = \infty, \lim_{x \to 3^-} f(x) = -\infty$ $\boxed{x = 3}.$	◦ \Rightarrow The graph of	f has $infinite$ discontinuity at
5. b) $x^3 = x + 1$. If the equation $x^3 - x^3 = x + 1$.	-x-1=0 has a re	eal solution then the two graphs

(

1

ġ

b) $x^{2} = x + 1$. If the equation $x^{2} = x^{2} - 1 = 0$ has a real solution then the two graphs intersect. Let $f(x) = x^{3} - x - 1$. f(0) = -1 < 0, f(2) = 5 > 0. Since f is continuous on [0,2] (polynomial function) then from the I.V.T. there exist at least one $c \in (0,2)$ such that f(c) = 0.